Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells.
نویسندگان
چکیده
Identification of the molecular mechanisms that can promote human hematopoietic stem cell amplification is a major goal in experimental and clinical hematology. Recent data indicate that a variety of regulatory molecules active in early development may also play a role in the maintenance of hematopoietic stem cells with repopulating activity. One important class of early developmental genes determining hematopoietic development are homeobox transcription factors. Here, we report that retrovirally mediated expression of the homeobox gene HOXB4 rapidly triggers an increase in the number of human hematopoietic cord blood cells with stem cell and progenitor cell properties detected both by in vitro and in vivo assays. This growth enhancement extended across primitive myeloid-erythroid and B-lymphoid progenitors but did not lead to alterations in the balance of lymphomyeloid reconstitution in vivo, suggesting that HOXB4 does not affect control of end-cell output. These findings reveal HOXB4 as a novel, positive regulator of the primitive growth activity of human hematopoietic progenitor cells and underline the relevance of early developmental factors for stem cell fate decisions.
منابع مشابه
Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro.
Little is known about the molecular mechanisms controlling primitive hematopoietic stem cells, especially during embryogenesis. Homeobox genes encode a family of transcription factors that have gained increasing attention as master regulators of developmental processes and recently have been implicated in the differentiation and proliferation of hematopoietic cells. Several Hox homeobox genes a...
متن کاملHoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells.
Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellul...
متن کاملHEMATOPOIESIS AND STEM CELLS Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expre...
متن کاملDownstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells.
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expre...
متن کاملNF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4.
The transcription factor homeobox B4 (HOXB4) is preferentially expressed in immature hematopoietic cells and implicated in the transition from primitive hematopoiesis to definitive hematopoiesis as well as in immature hematopoietic cell proliferation and differentiation. We previously identified Hox response element 1 (HxRE-1) and HxRE-2/E-box as 2 critical DNA-binding sites of the HOXB4 promot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2002